New York State Medicaid Prescriber Education Program

Relative efficacy of medications for type 2 diabetes

Treating type 2 diabetes mellitus

Key messages

- Metformin should be used as a first-line medication in almost every patient with type 2 diabetes.
- 2) DPP-4 inhibitors and GLP-1 agonists should not be used first-line in patients with type 2 diabetes because metformin, sulfonylureas, and insulin are more efficacious.
- 3) HbAIC goals should be individualized for each patient with type 2 diabetes: less than 7% for most patients and less than 8% for specific high-risk subgroups.
- 4) Patients with type 2 diabetes should have an HbAIC test every three to six months.

Risk reduction of diabetes-related endpoints

VKPDS 35

 Objective: Collect long-term data on HbA_{IC} reduction with sulfonylureas and insulin (10-year follow-up)

Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. *BMJ*. Aug 12 2000;321(7258):405-12.

Metformin can lower A1C about 1-2%

Study	Results
Nathan DM et al. 2009	Metformin monotherapy will \bigvee AIC levels by ~1.5%. Expected range with monotherapy is 1-2%
DeFronzo RA 1995	Efficacy of metformin alone was similar to that of SU alone. Metformin is equally effective when used in combination with SU. Average AIC $\checkmark \sim 1.3$ -1.7%
Garber AJ et al. 1997	Metformin lowered AIC generally in a dose-related manner. The decrease ranged from 0.6% to 2% respectively at dosages of 500 to 2,000 mg daily.
Bailey CJ et al. 1996	Efficacy of metformin in obese and non-obese patients in type 2 diabetes is similar to that achieved with a sulfonylurea.

Sulfonylureas can lower A1C about 1-2%

Study	Results
Nathan DM et al. 2009	Efficacy of SU is similar to metformin; lowers AIC by ~1.5%
Turner RC et al. 1998	UKPDS: AIC over 10yrs of treatment similar among SUs (chlorpropamide, glyburide) and insulin
Scholz GH et al. 2001	Glimepiride associated with a 1.8% reduction in AIC in newly-treated patients, 1.3% reduction among those switched from another agent
DeFronzo RA 1999	Sulfonylureas reduce AIC by I.5%-2%

Sulfonylureas can lower A1C about 1-2%

Effect	Sulfonylureas and Repaglinide	Metformin	Troglitazone	Acarbose
Mechanism of action	Increase in insulin secretion	Decrease in hepatic glucose production; increase in muscle insulin sensitivity	Decrease in hepatic glucose production; increase in muscle insulin sensitivity	Decrease in GI absorption
Decrease in FPG level, mmol/L (mg/dL)	3.3–3.9 (60–70)	3.3–3.9 (60–70)	1.9–2.2 (35–40)	1.1–1.67 (20–30)
value, percentage points Triglyceride level HDL cholesterol level LDL cholesterol level Body weight Plasma insulin Adverse events	1.5–2.0 No effect No effect No effect Increase Increase Hypoglycemia	1.5–2.0 Decrease Slight increase Decrease Decrease GI disturbances, lactic acidosist	1.0–1.2 Decrease Increase Increase Decrease Anemia, hepatic toxicity‡	0.7–1.0 No effect No effect No effect No effect No effect Gl disturbances

Table 1. Comparison of Sulfonylureas, Repaglinide, Metformin, Troglitazone, and Acarbose When Used as Monotherapy*

* FPG = fasting plasma glucose, GI = gastrointestinal; HDL = high-density lipoprotein; LDL = low-density lipoprotein.

† Incidence of 0.03 cases per 1000 patient-years (rare).

+ Severe, idiosyncratic, sometimes irreversible hepatic failure has been reported with troglitazone, but the precise incidence is unknown. Elevated liver enzyme levels occur in about 2% of patients.

DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999;131:281-303.

Insulin can lower A1C >1.5%

Study	Results
DeFronzo RA 1999	Insulin use in academic research settings can decrease AIC by ~2%
Nathan DM et al. 2009	Most effective antidiabetic agent; can decrease any AIC to target with no maximum dose ceiling effect
Fonseca V et al. 2011	Adding insulin glargine to metformin monotherapy resulted in a 2% decrease in AIC versus 1.7% reduction when added to SU monotherapy or metformin + SU combination therapy

GLP-1 agonists can lower A1C 0.5-1%

Study	Results
Nathan DM et al. 2009	Exenatide may reduce AIC by 0.5-1%. Published prior to approval of liraglutide (2010)
Kendall DM et al. 2005	Exenatide can reduce AIC by 0.6 to 0.8%
Visboll T et al. 2007	Liraglutide can reduce AIC by 0.98 to 1.45% after 14 weeks of treatment when compared to placebo.

GLP-1 agonists include exenatide (Byetta®) and liraglutide (Victoza®)

DPP-4 inhibitors can lower A1C 0.5-1%

TABLE 1

A1c Change Results from Randomized Controlled Trials^a of Sitagliptin and Saxagliptin in Adult Patients with Type 2 Diabetes

					Mean Baseline Alc		Mean Change in Alc		
First Author and Year	Comparison	Treatment N	Control N	Length	Treatment	Control	Treatment	Control	Mean (95% CI) Difference from Control ^b
Raz 2006 ²⁴	Sitagliptin 100mg monother- apy vs. placebo	193	103	18 weeks	8.0	8.1	-0.5	+0.1	-0.6 (-0.8 to -0.4)
Aschner 2006 ²⁵	Sitagliptin 100mg monother- apy vs. placebo	229	244	24 weeks	8.0	8.0	-0.6	+0.2	-0.8 (-1.0 to -0.6)
Charbonnel 2006 ²⁶	Sitagliptin 100 mg + metfor- min vs. placebo + metformin	453	224	24 weeks	8.0	8.0	-0.7	-0.0	-0.7 (-0.8 to -0.5)
Rosenstock 2006 ²⁷	Sitagliptin 100mg + pioglita- zone vs. placebo + pioglitazone	163	174	24 weeks	8.1	8.0	-0.9	-0.2	-0.7 (-0.9 to -0.5)
Hermansen 2007 ²⁸	Sitagliptin 100mg + glimepir- ide vs. placebo + glimepiride	102	103	24 weeks	8.4	8.5	-0.3	+0.3	-0.6 (-0.8 to -0.3)
Hermansen 2007 ²⁸	Sitagliptin 100 mg + glimepir- ide + metformin vs. placebo + glimepiride + metformin	115	105	24 weeks	8.3	8.3	-0.6	+0.3	-0.9 (-1.1 to -0.7)
Goldstein 2007 ²⁹	Sitagliptin 100 mg vs. placebo	175	165	24 weeks	8.9	8.7	-0.7	+0.2	-0.8 (-1.1 to -0.6)

DPP-4 inhibitors include sitagliptin (Januvia[®]), saxagliptin (Onglyza[®]), and linagliptin (Tradjenta[®])

Fairman K, Curtiss F. Call for Comparative Effectiveness Research: Lowering A1C with Sitagliptin, Saxagliptin, or Cinnamon. JMCP. Oct 2009;15(8):696-700.

DPP-4 inhibitors can lower A1C 0.5-1%

Aschner et al found that the largest reductions in AIC were seen in patients with a higher baseline AIC

Aschner P, Kipnes M, Lunceford J, et al. Effect of Dipeptidyl Peptidase-4 Inhibitor Sitagliptin as Monotherapy on Glycemic Control in Patients with Type 2 Diabetes. Diabetes Care. Dec. 2006; 29(12):2632-2637.

DPP-4 inhibitors can lower A1C 0.5-1%

- Linagliptin approved in May 2011
 - Compared to placebo, linagliptin demonstrates similar AIC reductions compared to other DPP-4 inhibitors

Study (duration; wk)	Regimen ^b (mg)	No. of FAS pts	BL HbA ₁₀ (%)	Adjusted ^c mean change in HbA _{1c} level ^d [treatment- effect] ^e (%)
Versus PL				
Del Prato et al.[19]	LIN 5 od	306-333	8.0	-0.44 [-0.69]**
(24)	PL	147-163	8.0	0.25
Kawamori et al. [29]9	LIN 5 od	159	8.1 ^h	-0.49 [-0.87]**
(12)	LIN 10 od	157-160	8.0 ^h	-0.50 [-0.88]**
	PL	80	8.0 ^h	0.39

Scott L. Linagliptin In Type 2 Diabetes. Drugs 2011; 71(5):611-624.

Summary of expected A1C decreases of various interventions

Intervention	Expected A1C	Advantages	Disadvantages
	decrease as		
	monotherapy (%)		
Lifestyle	1.0 - 2.0	Broad benefits	Insufficient for most within first year
management/MNT			
Metformin	1.0 - 2.0	Weight neutral/modest	GI side effects; contraindicated with renal
		weight loss	insufficiency
Sulfonylureas	1.0 - 2.0	Rapidly effective	Weight gain; hypoglycemia
Insulin	>1.5	No dose limit	Multiple injections; weight gain; hypoglycemia;
			analogs are expensive
GLP-1 agonists	0.5 - 1.0	Weight loss	Multiple daily injections (exenatide); GI side
			effects; expensive
Meglitinides	0.5 - 1.5	Rapidly effective	Weight gain; multiple daily dosing; expensive
AGIs	0.5 - 0.8	Weight neutral	GI side effects; multiple daily dosing; expensive
TZDs	0.5 - 1.4	Improved lipid profile	Fluid retention; CHF; weight gain; bone fractures;
			MI (rosiglitazone)
DPP-4 inhibitors	0.5 - 0.8	Weight neutral	Expensive

- DPP-4 inhibitors and GLP-1 agonists should not be used first-line in patients with type 2 diabetes
- Metformin, sulfonylureas, and insulin are more efficacious than DPP-4 inhibitors and GLP-1 agonists in lowering HbA_{1C}